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Controlling chaos in a Lorenz-like system using feedback

G. Kociuba* and N. R. Heckenberg
Department of Physics, University of Queensland, St. Lucia, Queensland, Australia

~Received 10 December 2002; revised manuscript received 24 July 2003; published 31 December 2003!

We demonstrate that the dynamics of an autonomous chaotic laser can be controlled to a periodic or steady
state under self-synchronization. In general, past the chaos threshold the dependence of the laser output on
feedback applied to the pump is submerged in the Lorenz-like chaotic pulsation. However there exist specific
feedback delays that stabilize the chaos to periodic behavior or even steady state. The range of control depends
critically on the feedback delay time and amplitude. Our experimental results are compared with the complex
Lorenz equations which show good agreement.
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I. INTRODUCTION

To observe chaos in nonlinear systems with two degr
of freedom one parameter must be modulated in orde
create a third degree of freedom. Many laser chaos exp
ments are performed this way@1#. If a system already ha
three degrees of freedom, then it is possible for chaos
emerge without modulation and thus without an externa
imposed time frame. The Lorenz-like chaos in the ammo
laser is an example of such autonomous chaos@2#.

Dynamics of such chaotic systems have been studied
tensively, both numerically@3#, and experimentally@4–6#.
Recently, there has been much effort put into control
chaos. This can be separated into two categories: feed
control ~active control! and nonfeedback~passive! control. A
number of feedback schemes can be used to control a ch
system, such as control by occasional proportional feedb
@7#, control by synchronization@1#, and the well-known Ott-
Grebogi-Yorke~OGY! method. All these methods vary i
complexity, and may be difficult to implement in a syste
with limited bandwidth. This is because the computati
time to calculate detailed information about the system
significant. There are other feedback methods that do
require any computation, but instead rely on extracting
system variable and feeding that back into another varia
or parameter. This control method is often called ‘‘feedba
control’’ and is understood in the literature to mean subtr
tive feedback. That is, the control signal is expressed in
form F(t)5G„x(t)2x(t2t)…, where t is the delay time,
and G is some function with the condition thatG(0)50.
One example is control of a chaotic CO2 laser by feedback o
a variable which has been subtracted from its value at
earlier time@8#. F(t) can be thought of as an error sign
which tends to zero as the system approaches control, co
meaning a periodic state wherex(t)5x(t2t). The advan-
tage of this type of scheme is that no knowledge of the s
tem other than the average pulsation period is required~con-
trol is only achieved for certain values oft in the vicinity of
the average pulsation period!. Experiments with subtractive
feedback on the Lorenz-like ammonia laser showed that c
trol to periodic and even steady state is possible@9#. The
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feedback error signal was generated by analog subtrac
using a coaxial delay line. When the laser was controlled
a periodic state, the feedback signal was itself periodic,
we can think of this as self-synchronization. It has also be
shown that this type of laser operating above the ch
threshold could be synchronized to another chaotic sys
via the pump@6#. Here we make a detailed theoretical ana
sis of the subtractive feedback system to elucidate the ra
of conditions under which control is possible. In an attem
to further simplify the control of chaos we have examin
the possibility of avoiding the subtraction process in the g
eration of the feedback error signal. Now ifF(t)5G„x(t)…
then F(t) is nonzero in general. This type of feedback h
been investigated and is known to destabilize a system
general@10#. The advantage would be that no subtraction
delayed signals would be required. This type of control w
observed in a loss modulated CO2 laser@11,12# where nega-
tive feedback of subharmonic components extracted from
intensity signal was applied. This was achieved using a lo
rithmic amplifier followed by a ‘‘washout filter.’’ Here we
numerically investigate control without, and with, a low an
high pass filter, which is simpler than the washout filt
method.

II. NUMERICS

The Lorenz model is used to describe the dynamics of
ideal two level atom interacting with a traveling wave in
ring resonator. Although the atoms are pumped like a th
level system, it can be shown that the three level system
reduce to a two level system to a good approximation@13#.
Our autonomous system has been shown to have a w
range of dynamics for various parameter ranges. Nearly
this behavior has been reproduced using the Lorenz e
tions or the complex Lorenz equations@14#. The complex
equations take into account the fact that in the case of la
systems the cavity frequency is detuned from the ato
resonance in general. We use the complex Lorenz equat
in our simulations of delayed feedback on a chaotic syst
The complex Lorenz equations are

Ė52@~11 id!E2lP#,

Ṗ52~1/s!@~12 id!P2ED#, ~1!

Ḋ5~b/s!@12D1 f ~ t !21/2~E* P1P* E!#,
©2003 The American Physical Society12-1
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where

s5k/g' , b5g i /g' .

E, P, andD are the electric field, polarization, and inversio
respectively;l is the average pump level,f(t) is the modu-
lation applied to the pump;d is the detuning of the cavity
resonance relative to the atomic line center;k,g i , and g'

are the cavity, polarization, and inversion decay rates,
spectively. In all our simulations the parameters ares
51.5, b50.25, d50.2, andl546. For chaos to occur th
relation between the decay rates must bek.g i1g' . This is
known as the bad cavity condition since a lossy cavity
required.

Variations in the pump power directly affect the popu
tion inversion so the feedback term appears asf (t). We in-
vestigate two cases of feedback, the first being of the form
subtractive feedback@15# f (t)5A@ I (t)2I (t2t)# where
I (t)5E(t)E* (t) represents the laser intensity, andA is the
feedback amplitude. This type of feedback was experim
tally implemented by driving an acousto-optic modula
~AOM! with a signal generated using a coaxial cable de
line to perform the subtraction@9#. To compare these result
with our numerical results, we introduce an additional de
in the feedback loop of our model to account for the pro
gation delayT within the AOM used to convert the erro
signal into a modulation of the pump power. For the seco
case of nonsubtractive feedback, we dispense with the
traction step and set the feedback to bef (t)5AI(t2T) and
investigate the amplitude-feedback delay parameter spac
both these feedback cases the system is operating well a
the chaos thresholdl th so that the average pump levell is
chosen such that inf(l1 f (t)).l th . In all our calculations
time is scaled@16# as kt which is dimensionless sincek
represents the cavity decay rate, hence the feedback vari
T andt are also dimensionless.

A. Control by subtractive feedback

As explained above, in all our experiments there was
additional delayT within the AOM, so we define the feed
back term to be

f ~ t !5A@ I ~ t2T!2I „t2~T1t!…#. ~2!

The difference delayt is the time between the two measur
ments of output intensity, the difference between which c
stitutes the error signal. The feedback delay is defined as
time T for the feedback signal to enter back into the syste
We integrate the complex Lorenz equations using this fe
back term, and for different pairs of parameterst, T and
amplitudeA, construct the time seriesI (t) associated with
each of the parameters. Periodic solutions were identi
from the time series and the periodicity ofI (t) was deter-
mined ignoring the initial transient behavior before long te
dynamics took over. The period of the time trace was plot
on the difference delay–feedback delay parameter space
periods up to 6. Where no period was identified, the plot w
left blank. The first result was calculated using a very we
feedback amplitude 0.0004 and the plot is shown in Fig
06621
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Since the intensity pulsations range between 80 and
units, this sets the maximum feedback amplitude to be ab
0.04% of the average pump power. The average scaled
sation period is 3.08. Only periods greater than 3 exist
very weak feedback as is evident in Fig. 1. If the feedba
amplitude is increased to 0.001, equivalent to 10% of
average pump power, we find this increases the numbe
periodic states and leads to the existence of period 0—
steady state. This is shown in Fig. 2, where the dashed
indicates the average scaled pulsation period for the cha
sytem without feedback~3.08!. Many of the features in the
weak feedback case in Fig. 1 are evident in Fig. 2, such
the rings of period 4 in parameter space. In the stron
feedback case, these rings have been distorted and the
tions shifted slightly. These rings contain regions of cont

FIG. 1. Control to various periods by subtractive feedback
maximum amplitude of 0.04% of the pump. The difference delat
and the feedback delayT are both dimensionless, see text for d
tails.

FIG. 2. Control to various periods by subtractive feedback
maximum amplitude 10% of the pump. The difference delay ist,
and the feedback delay isT.
2-2
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to less than period 4 where period 0 dominates. As migh
expected, islands of control exist at multiples of the aver
pulsation period along the feedback delay axis. The sa
applies for the difference delay axis. If we leave the feedb
amplitude at 0.001 but change the sign of the feedbac
negative, the result is shown in Fig. 3. There are sim
structures here as in the previous figure except that the
lands are displaced half an average pulsation period upwa
This can be understood by considering the change of sig
the feedback term to be equivalent to a phase shift of ha
period. These well defined islands of stability are destro
if the feedback amplitude is too large. We increased the fe
back amplitude to 0.006 which would correspond to an
erage of 60% of the average pump power. The resul
shown in Fig. 4. Since the feedback amplitude modulatio
so large it is no longer perturbative and the system is
longer Lorenz like. Figure 4 shows there are now islands
control which are not at multiples of the average pulsat
period of the unperturbed system in either the difference
lay axis or the feedback delay axis. The size of the perio
islands are significantly smaller in the strong feedback c
compared to the moderate feedback case as in Fig. 2.
would expect the islands to be smaller since if the system
not very close to the periodic state, then the large feedb
amplitude drives the system quickly away from the perio
state. Previous experiments on the ammonia laser@9# showed
that the laser was controlled to period 0 when the feedb
amplitude was 3% and 7%. The difference delayt used was
about one laser pulse period. Control to period 1, 2, 4, 6
observed at 5% modulation depth. Numerically, we fou
control to period 0, 1, 3, 4, 5, 6 with a modulation depth
10% for the second multiple of the average pulsation per
as well as the first multiple. We did not find any period 2
this amplitude. This could be due to the fact that numerica
we calculated the period of the intensity traces which c
tained about 1000 pulsations. The experiments have the l
tation that only about 70 pulses during control could be

FIG. 3. Control to various periods by subtractive feedback
maximum amplitude 10% of the pump. The difference delay ist,
and the feedback delay isT. The error signal has been inverted wi
respect to Fig. 2.
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corded. Thus it is possible that what appeared to be perio
was actually a long transient which approaches period
This is always a problem with any finite time series since o
cannot be sure whether the dynamics in a finite time serie
permanent or transient.

The islands of stability have a definite preferred orien
tion, in particular the period 0 islands all have a slope
2 1

2 . This can be understood the following way. Period
occurs after the oscillation is completely damped so just
fore it is extinguished it is a sinusoid to a very good appro
mation. So we can write the signal asf (t)5asin(vt) and the
delayed signal will bef (t1f)5asin„v(t1f)…, where f
is the phase difference between the two signals due
the subtraction timet so f5tv. Since f (t)2 f (t1f)5
22asin(vf/2)cos„v(t1f/2)…, the generated difference sig
nal has an effective delay equal to half the delayt within the
control island which can be compensated by an equal
opposite change in the feedback delayT.

We now look at the stability of the fixed points of th
nonlinear system to gain some insight into the mechanism
control. The eigenvalues of the feedback system canno
obtained analytically since the determinant of the Jacobia
a transcendental function, so this can only be solved num
cally. There are an infinite number of complex solutions
this type of equation in general, and the system will be sta
if all the eigenvalues are negative. We search the same
rameter space as in Fig. 2 and setA50.001 and plot~Fig. 5!
whenever all the eigenvalues of the determinant of the Ja
bian are less than or equal to zero. Without the feedb
@ f (t)50 in Eq.~1!# the eigenvalues of these fixed points a
positive. It is clear that the position of the islands of cont
to period 0 and period 1 are contained within the islands
Fig. 5. This shows that the eigenvalues of the fixed points
the system are all negative during control to period 0 a
period 1. Control to a periodic state by stabilizing an existi
unstable periodic orbit of a chaotic attractor has previou

f FIG. 4. Control to various periods by subtractive feedback
maximum amplitude of 60% of the pump. The difference delay ist,
and the feedback delay isT.
2-3
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G. KOCIUBA AND N. R. HECKENBERG PHYSICAL REVIEW E68, 066212 ~2003!
been demonstrated experimentally and theoretically as
cussed in the Introduction. These methods of control rely
the state of the system having a reasonable probability
visiting the desired unstable periodic orbit where a con
mechanism can take full effect. This is not the case for
riod 0 since the state never visits the unstable fixed p
@17#. We overcome this by applying the feedback. Th
changes the stability of the unstable fixed points, allowing
initially inaccessible region of phase space to be visited
certain values of feedback parameters as shown in Fig.

In previous feedback experiments@9# and in our experi-
mental results following this section, the feedback signa
the laser system is ac coupled. This will only give a nonz
final error signal if the unfiltered error signal is varying wi
time, and a constant unfiltered signal will appear as zero fi
error signal. To check what effect this might have, we
clude this effect in our model by applying a high pass an
low pass filter tof (t) and using this modifiedf (t) as the
feedback signal in the differential equations. The high p
filter models the ac coupling while we also include a lo
pass filter to model the finite bandwidth of the AOM. W
apply this procedure to the subtractive feedback case for
different values of low pass cutoff angular frequencies 6
1, 0.85, 0.75, and 0.5 where in each case the high pass c
was set to 0.01. The result for the high cut off angular f
quency of 1 is shown in Fig. 6. The characteristic sca
pulsation period is 3.08~hence the scaled angular frequen
is '2), where time has been scaled to the parameterk. The
cutoff frequency 6 is' three times the average pulsatio
frequency and we found that this results in only a slig
decrease of the amplitude of the fundamental frequency c
ponent allowing control to proceed. As the cutoff frequen
decreases, there is a greater attenuation of the fundam
frequency which gets fed back into the equations. This
sults in an effective lower modulation amplitude at the fu
damental frequency and therefore the range of control
comes narrower. This is evident by comparing Fig. 6 to F

FIG. 5. Islands represent the nonpositive Lyapunov spectrum
Eq. ~1! for the feedback parameterA50.001. The difference delay
is t, and the feedback delay isT.
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2 ~which is unfiltered, but is found to look similar to a cut o
frequency of 6! where the islands of control retain their or
entation but decrease in size. All the period 0 islands w
found to have been extinguished for a cutoff frequency
0.5, and the lowest period was 4. These results show tha
effects of ac coupling and the limited bandwidth of the AO
can reasonably be neglected in the theoretical model
There is only a significant difference when the bandwidth
the feedback signal is equal to or less than the character
frequency of the system, and this just causes the contro
lands to shrink and get destroyed if the bandwidth is mu
less than the characteristic frequency.

B. Control by nonsubtractive feedback

We now simplify the feedback term so that there is
subtraction and simply takef (t)5AI(t2T). As before we
integrate the complex Lorenz equations using this feedb
term, and for different pairs of parametersT and amplitude
A, construct the time seriesI (t) associated with each of th
parameters. The periodicity ofI (t) was calculated the sam
way and a map of the results as a function of delay a
feedback amplitude was constructed as shown in Fig. 7
save time, relatively larger steps in the feedback amplitudA
were used. Again the scaled average pulsation period of
unperturbed system is 3.08 as indicated by the dashed
Period 0 dominates the regions near multiples of the sca
average pulsation period, 3.08 and 6.16, which first appea
a feedback amplitude of 1.131023 corresponding to abou
11% modulation depth. As this amplitude increases more
ferent period numbers emerge. The numerical results in
7 show that control to period 1 occurs only on the right ha
side of the large period 0 block. This segment of period
begins at slightly more than the average pulsation period
the unperturbed system. This is the only region we can
plore experimentally since there are delays in the acou
optic modulator which cannot be removed.

of FIG. 6. Control to various periods by subtractive feedback fo
high and low pass cutoff scaled frequenciesv are 1 and 0.01, re-
spectively. The scaled~dimensionless! average pulsation frequenc
v0 is 2.
2-4
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CONTROLLING CHAOS IN A LORENZ-LIKE SYSTEM . . . PHYSICAL REVIEW E68, 066212 ~2003!
The eigenvalues of the Jacobian of Eq.~1! are calculated
and regions where all eigenvalues are non-positive are d
eated in Fig. 8. The period 0 and period 1 islands from F
7 appear in a similar position to the islands in Fig. 8. T
shows that the stabilization of the fixed points during cont
to period 0 and period 1 allows an initially inaccessible
gion of phase space to be reached.

Three measures are introduced to extract informa
about the dynamics during and near a control window. T
periodicity is calculated as before, and the number of tr
sient pulses before control was achieved is calculated
referred to as ‘‘transient pulses.’’ The difference between
number of cycles of output intensity and the feedback sig
was calculated~which is related to the average frequen
difference! then this difference is determined over the du
tion of the feedback. This measure is referred to as the ‘‘
erage phase difference.’’ Finally, ‘‘phase slips’’ are calcula

FIG. 7. Control to various periods by nonsubtractive feedb
as a function of the difference delayt and feedback amplitudeA.

FIG. 8. Islands represent an all nonpositive Lyapunov spect
of Eq. ~1!. The feedback delay isT and amplitude isA.
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by comparing each successive intensity peak time and fe
back peak time keeping track of their relative orientatio
and counting the number of times the sign of the differen
between these peak times changes. This measure is
since there are situations where the average frequencie
two quantities are the same yet there may be an equal n
ber of positive and negative phase slips which cannot
extracted from the average phase difference measure al

The feedback delay has been set toT53 which corre-
sponds to a vertical line atT53 in Fig. 7, and the measure
are calculated for the same range of amplitude points as
7, except the number of amplitude points was increased
fold for higher resolution. The number of transient puls
before control emerged is shown in Fig. 9~b! indicating that
the fastest rate of convergence to the periodic state is' in
the center of the amplitude control window shown in F
9~a!. There is a period 6 orbit atA50.0004 which has a
corresponding low number of transient pulses.

The average phase difference, which is related to the
erage frequency, is displayed in Fig. 9~d!, and the difference
is less than 4p rad where the number of cycles is'1000.
This shows that the weakest form of generalized synchro
zation occurs for the whole amplitude range calculated
the fixed feedback delay ofT53. To determine which re-
gions of the generalized synchronization states are ph
locked, the number of phase slips was calculated and
shown in Fig. 9~c!. There are generally few phase slips du
ing the controlled state, indicating phase locking. Phase s
were not calculated for the amplitude range correspondin
period 0 as synchronization has no meaning at steady s

There are some phase slips forA,0.0011 but this
amounts to only 18% of the data points in this region givi
a high synchronization ratio of 82%.

The measures used in this analysis show that genera
synchronization occurs for a wide range of feedback para
eters, and perfect synchronization occurs before con
emerges for 0.0011,A,0.0013. The phase slip measur
can show when a dynamical state is approaching the edg

k

m

FIG. 9. The period number, number of transient pulses bef
control emerges, phase slips, and average phase difference,
function of feedback amplitude are shown in~a!, ~b!, ~c!, and ~d!,
respectively.
2-5
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G. KOCIUBA AND N. R. HECKENBERG PHYSICAL REVIEW E68, 066212 ~2003!
an Arnold tongue which is not observed by comparing av
age frequencies, and quantifies the quality of the synch
nized state.

We now modify the nonsubtractive feedback system
including filtering and the result for the cutoff angular fr
quency of 1 is shown in Fig. 10. Again as the low pass cu
is decreased there is less modulation at the fundamenta
quency so a greater feedback amplitude is required to c
pensate. This is evident in the figure as the islands of con
move towards a higher amplitude of feedback as the cuto
decreased. These results show that limiting the bandwidt
the error signal has the effect of raising the threshold
control and for a sufficiently large bandwidth the results
essentially the same as the unfiltered case.

III. EXPERIMENTAL

Our experimental system consists of a13CO2 laser which
optically pumps a15NH3 ring laser though a vibration tran
sition at 10.78mm. The lasing occurs through a rotation
transition at a wavelength 0.153 mm. We use a semi-conf
ring cavity as shown in Fig. 11 to achieve unidirection
lasing, where the backward traveling wave is chosen in p
erence to the forward wave because the ac Stark effect s
the gain line in the forward direction@18#. This allows us to
use the Lorenz equations to describe the dynamics of
laser system@13#. The intensity of the backward wave in th
ring laser is measured with a Schottky barrier diodeB. This
signal is monitored by a spectrum analyzer and recorded
a digital storage oscilloscope. In order to implement the n
subtractive feedback scheme a signal proportional to the
ser output has to be fed back to modulate the pump po
The signalI (t) is therefore fed into a buffering amplifie
amplified, then applied to the acousto-optic modulator. T
finite acoustic velocity in the AOM creates a delay that co
be varied by' 20% of the fundamental pulsation period b
adjusting the AOM’s position transverse to the CO2 pump

FIG. 10. Control to various periods by nonsubtractive feedb
for a scaled cutoff angular frequency of 1. The low pass cutof
0.01.
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beam. There is a second detectorA which is used to monitor
the pump dynamics. This signal is simultaneously record
with detectorB onto a digital storage oscilloscope.

IV. EXPERIMENTAL RESULTS

The delay timeT was adjusted so that this correspond
to the average pulsation period of the laser. Control to per
1 was observed as shown in Fig. 12. Here the average f
back amplitude was 5%. Before the feedback control w
turned on ~at t51.2 ms) the laser produced Lorenz-lik
chaos. Initially the control signal caused the Lorenz-like p
sations to break into transient pulses before the sys
settled to period 1 pulsations, and the feedback signal
also periodic. The phase difference between the feedb
signal and the intensity output was locked only during t
controlled state as expected. The smallest feedback d
which could be achieved in the experiment was about tw
the average pulsation period of the unperturbed system
that we could not exploret,6.0 in Fig. 7.

k
s

FIG. 11. Experimental schematic. Gr is a blazed grating at
pump wavelength which doubles as a mirror for the lasing wa
length. wm is a wire mesh used as an output coupler. The
infrared~FIR! intensity output is measured, delayed, and applied
the AOM

FIG. 12. Control to period 1 using nonsubtractive feedback
the FIR laser withA'0.05. The average pulsation period befo
and during control is 1.179ms and 0.9747ms, respectively. The
intensity is in arbitrary units.
2-6
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CONTROLLING CHAOS IN A LORENZ-LIKE SYSTEM . . . PHYSICAL REVIEW E68, 066212 ~2003!
We also find that when the sign of the feedback is
versed, control can still be achieved by adjusting the dela
the feedback~not shown since it looks the same as non
versed feedback!.

We also found that outside the range where control w
achieved, the initially chaotic intensity can be synchroniz
so that the output and feedback is fully phase locked, and
time series is shown in Fig. 13. It appears that a differ
type of chaos is produced during feedback. This resem
Lorenz-like chaos operating closer to the chaos thresh
~from above! compared to the unperturbed system due to
lengthening of the spirals. To check for phase slips a his
gram is calculated for the time difference between the F
intensity peaks and the feedback signal, and the resu
shown in Fig. 14. During synchronization there is a sign
cant lag between the FIR intensity, and the feedback sig
and all time differences are within the average pulsation
riod T51.068.

The histogram contains two peaks where the larger p
corresponds to the start of the spiral, and the smaller to
end of the spiral which is preceded by' ten cycles with a
significantly larger period than the average. The average
sation period decreases with increasing pump strength w
no feedback is applied, so the feedback has increased
period during the last few cycles of the spiral despite the f
that the average energy of the pump during that region
slightly higher than at the start of the FIR spiral.

These results show that control to period 1 can
achieved by choosing an appropriate delay time. Synchr
zation can also be achieved, which can be used to crea
modified chaos which has a higher bandwidth than the
perturbed system which is phase locked to the delayed
nal.

V. CONCLUSION

We numerically investigated control of Lorenz-like cha
to various periodic states including period 0 using two fe

FIG. 13. Synchronization by nonsubtractive feedback. Aver
pulsation period before feedback and during feedback
1.1933ms and 1.068ms, respectively. There are no phase sl
when the non subtractive feedback is turned on. The intensity
arbitrary units.
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back control methods. The first case was subtractive fe
back of intensity including loop delay. We found that for
small amplitude control to periods greater than 3 existed
moderate feedback amplitude, control to period 0, 1, 3, 4
and 6 emerged where large islands of period 0 dominate
difference delay–feedback delay parameter space. Thes
lands are separated by the average pulsation period of
system. They can be shifted half a period by inverting
feedback signal. We showed that islands of period 0 a
period 1 correspond to a nonpositive set of eigenvalues
the chaotic system with feedback emphasizing that a non
turbative picture is necessary to understand the full rang
opportunities for control, which are not limited to preexistin
unstable periodic orbits. We then examined the effect of
plying an ac filter to the feedback signal and varied the ba
width before feeding it into the chaotic equations. Contro
still possible even if the high pass cutoff frequency w
slightly less than the characteristic frequency of the syst
The results are in good agreement with previously publis
experimental results.

The second feedback case consisted of a sim
subtraction-free feedback with only a loop delay. We fou
control to the same periodic cycle numbers as in the subt
tive case at the same feedback amplitude, and with the a
tion of period 2. The period 0 and period 1 islands domin
the feedback delay–amplitude parameter space. Thes
lands corresponds to the fixed points of the feedback sys
containing no positive eigenvalues. Phase slips were ca
lated indicating not only perfect synchronization just befo
~and during! control, but also for very low feedback ampl
tudes. Modifying the feedback signal by applying the sa
a.c. filtering and finite bandwidth as in the subtractive fee
back case, we find that this has the effect of raising
threshold amplitude for control as the bandwidth approac
the characteristic frequency of the system. Experiment
we were able to control a chaotic Lorenz-like laser to per

e
re

in

FIG. 14. This shows the frequency of occurrence for the ti
difference between the FIR intensity peaks, and the associ
pump fluctuation peaks, corresponding to Fig. 13. The average
sation period is 1.068ms. Peak detection error ranges from 0.05
0.1 ms.
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1 by this nonsubtractive method and found control to per
1 but were prevented from demonstrating period 0 by ti
delays in the AOM. Phase synchronization was experim
tally observed for a relatively large frequency mismatch
11.7% between the initial and final average pulsation f
quencies.

Overall, the concordance of experimental and theoret
v.

g,

v.

y,

06621
d
e
n-
f
-

al

results confirms that control of a strongly chaotic system
be achieved by controlling a single parameter using an e
signal based on a single variable, without any computatio
Further, the system can be controlled not only to perio
states but also to the technically more useful steady s
even though this region of phase space is inaccessible in
original system.
ys.
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